Ringkraftaufnehmer Für Schraubenkräfte bis 450 kN Typ F6804

WIKA Datenblatt FO 51.60

Anwendungen

- Ermittlung der Schraubenvorspannungen
- Mess- und Kontrolleinrichtungen
- Prüf- und Fertigungsanlagen
- Press- und Fügekraftüberwachung
- Spannkraftmessung und Zugkraftmessung an Spindeln

Leistungsmerkmale

- Messbereiche 0 ... 3 kN bis 0 ... 450 kN
- Relative Linearitätsabweichung 2 % F_{nom}
- Werkstoff: CrNi-Stahl
- Schutzart IP65

Ringkraftaufnehmer, Typ F6804

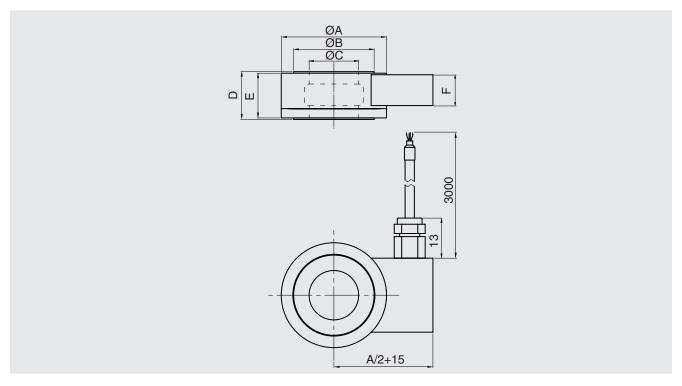
Beschreibung

Die Kraftaufnehmer der Baureihe F6804 ist für die Messung von Druckkräften geeignet und mit Nennlasten von 3 kN bis 450 kN erhältlich. Dieser Kraftaufnehmer ist in Ringgeometrie ausgeführt und speziell zur Messung von Schrauben- und Vorspannkräften konstruiert.

Das Einsatzgebiet dieses Kraftaufnehmers sind Applikationen wie Mess- und Prüfeinrichtungen in denen bspw. Schrauben- oder Bolzenkräfte gemessen werden. Außerdem kann die Kraft an Spindelantrieben oder allgemein Kraft über eine Ringgeometrie gemessen werden. Zu den Anwendungsbereichen gehört die einfache Ermittlung von Schraubenvorspannungen, bei denen der Kraftaufnehmer als messende Unterlegscheibe eingesetzt wird.

Hinweis

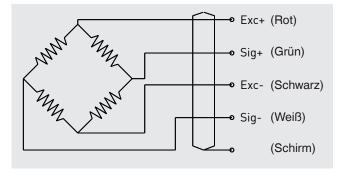
Um Überlastung zu vermeiden, ist es vorteilhaft den Kraftaufnehmer während der Montage elektrisch anzuschließen und den Messwert zu überwachen.


Die Messkraft muss zentrisch und querkraftfrei eingeleitet werden. Bei der Montage des Kraftaufnehmers sollte auf eine ebene und ausreichend harte Auflagefläche geachtet werden. Bedingt durch die kleine Geometrie reagiert dieser Kraftaufnehmer sehr empfindlich auf sich verändernde bzw. verschiedene Einbaulagen.

Technische Daten nach VDI/VDE/DKD 2638

Typ F6804	
Nennkraft F _{nom} kN	3, 5, 10, 20, 50, 100, 150, 200, 300, 450
Relative Linearitätsabweichung d _{lin}	2 % F _{nom}
Relatives Kriechen, 30 min. bei F _{nom}	0,5 % F _{nom}
Relative Umkehrspanne v	2 % F _{nom}
Relative Spannweite in unveränderter Einbaustellung b _{rg}	0,5 % F _{nom}
Relative Abweichung des Nullsignals d _S , ₀	±2 % F _{nom}
Temperatureinfluss auf das Nullsignal TK ₀	0,05 % F _{nom} /10 °C
Temperatureinfluss auf den Kennwert TK _C	0,05 % F _{nom} /10 °C
Grenzkraft F _L	150 % F _{nom}
Bruchkraft F _B	200 % F _{nom}
Werkstoff des Messkörpers	CrNi-Stahl
Nenntemperaturbereich B _{T, nom}	-10 +60 °C
Gebrauchstemperaturbereich B _{T, G}	-20 +80 °C
Eingangswiderstand R _e	$385 \pm 30 \Omega$
Ausgangswiderstand R _a	$350 \pm 5 \Omega$
Isolationswiderstand Ris	$\geq 5.000 \text{ M}\Omega/\text{DC } 100 \text{ V}$
Ausgangssignal (Nennkennwert) C _{nom}	1,0 ±10 % mV/V
Elektrischer Anschluss	Kabel Ø3 × 3.000 mm
Spannungsversorgung	DC 5 V (max. 10 V)
Schutzart (nach IEC/EN 60529)	IP65
Gewicht 3 kN - 20 kN 50 kN - 200 kN 100 kN - 450 kN	0,1 kg 1,1 kg 1,9 kg

Abmessungen in mm



Nennkraft in kN	Abmessungen in mm					
	øΑ	øΒ	øС	D	E	F
3, 5, 10, 20	34	24	16	15	14	10
50, 100, 150, 200	69	54	32	50	49	30
100, 200, 300, 450	95	78	50	50	49	30

Anschlussbelegung

WIKA Datenblatt FO 51.60 · 08/2019

Elektrischer Anschluss				
Speisespannung (+)	Rot			
Speisespannung (-)	Schwarz			
Signal (+)	Grün			
Signal (-)	Weiß			
Schirm 🖲	Schirm			

© 2019 WIKA Alexander Wiegand SE & Co. KG, alle Rechte vorbehalten. Die in diesem Dokument beschriebenen Geräte entsprechen in ihren technischen Daten dem derzeitigen Stand der Technik. Änderungen und den Austausch von Werkstoffen behalten wir uns vor.

Seite 3 von 3